FACULTY OF GEOLOGY, GEOPHYSICS AND ENVIRONMENTAL PROTECTION

APPLIED GEOLOGY

I. GEOLOGY

MAIN TOPICS

- 1. Different classifications of the Earth internal structure
- 2. Processes taking place at the subduction zones
- 3. Distribution of active volcanoes
- 4. Origin of shallow and deep earthquakes
- 5. Process of physical weathering and its results
- 6. Types of mass movements
- 7. Stages of river valley evolution
- 8. Glacial landforms
- 9. Process of costal erosion and its results
- 10. Origin and characteristics of flysch deposits

EXAMPLE QUESTIONS

- 1. The Conrad discontinuity occurs
 - a. In continental crust
 - b. In Oceanic crust
 - c. At the boundary between outer and inner core
 - d. At the boundary between lithosphere and asthenosphere
- 2. The accretion of tectonic plates manifests itself by
 - a. mid-oceanic ridge
 - b. negative linear thermal anomaly
 - c. oceanic trench
 - d. transform boundary

II. GEOLOGICAL CARTOGRAPHY

MAIN TOPICS

- 1. Geological structure styles
- 2. Structural and tectonic units
- 3. Types of unconformities
- 4. Folds classifications, mechanisms and causes of folding
- 5. Faults genesis and classifications
- 6. Nappes and overthrusts mechanisms of formation; internal structure of nappes
- 7. Fractures, their genesis and classification; joint systems
- 8. Topographic maps, cartographic rendering, classification of maps

- 9. Geological and related maps used in Poland
- 10. Global Positioning System, operating principles, satelite navigation systems

EXAMPLE QUESTIONS

- 1. A complete geological map includes:
 - a. map, geological profile, lithostratigraphic cross-section, legend
 - b. map, morphological profile, geological cross-section, explanatory text
 - c. map, geological cross-section, lithostratigraphic profile, explanatory text
 - d. map, geological cross-section, lithostratigraphic profile, explanatory text
- 2. The syncline is:
 - a. a form of fold containing younger deposits in the core
 - b. any form convex downwards
 - c. a form of fold containing older deposits in the core
 - d. any form convex upwards

III. MINERAL DEPOSITS

MAIN TOPICS

- 1. Parameters defining the deposit outline
- 2. Deposit formation processes subdivision, characteristics
- 3. Copper deposits genetic types, geological characteristisc
- 4. Zn-Pb deposits genetic types, geological characteristics
- 5. Cr deposits genetic types, geological characteristics
- 6. Deposits of energy resources subdivision, genetic types, geological characteristics
- 7. Geology of uranium deposits
- 8. Form and internal structure of the deposit
- 9. Technical-economic elements and parameters of deposits
- 10. Industrial minerals of the Lower Silesia

EXAMPLE QUESTIONS

- 1. Hydrothermal deposits are associated with processes:
 - a. evaporation
 - b. weathering and erosion
 - c. volcanic
 - d. none of the above
- 2. Genetic types of Zn-Pb deposits are:
 - e. VHMS, SHMS
 - f. metasomatic
 - g. evaporates
 - h. placer

IV. HYDROGEOLOGY

MAIN TOPICS

- 1. Hydrological cycle (climatic and lithogenic cycles, recharge and drainage, groundwater flow systems)
- 2. Hydrogeological properties of rocks. Methods of hydrogeological parameters' assessment (porosity, permeability, water-storage capacity, drainability).
- 3. Confined an unconfined aquifers, multiaquifer formations, hydrogeological windows.
- 4. Groundwater flow (hydrogeological gradient, Darcy's law, Darcian velicity and real veocity of groundwaters.
- 5. Chemical composition of groundwater (fresh waters, mineral waters, thermal and healing waters, major ions, accessory ions and microelements, hydro-chemical diagrams, hydro-chemical classifications)
- 6. Field methods of hydrogeological investigations (water level measurements, river flow and spring discharge measurements, assessment of hydrogeological parameters, water sampling)
- 7. Wells and other drainage devices (wells' constructions, inflow calculations, interpretation of pumping tests).
- 8. Contamination of groundwaters (sources of pollution, groundwater protection against pollutants).
- 9. Transport of contaminants within groundwater (advection, dispersion and sorption, transport of contaminants through aeration zone and in groundwater stream).
- 10. Groundwater monitoring (types of groundwater monitoring, basic rules of design of a monitoring net, on-site measurements and sampling).

EXAMPLE QUESTIONS

- 1. "Total Dissolved Solids" presents:
 - a. Mass of a dry residue,
 - b. Sum of concentrations of major ions present in water
 - c. Equals the Total Hardness
 - d. Sum of concentrations of all ions present in water
- 2. hydraulic conductivity considers:
 - a. permeability of rocks in respect to water,
 - b. permeability of rocks in respect to all fluids,
 - c. both answers a and b are correct,
 - d. all answers a, b and c are wrong

V. GEOCHISTRY

MAIN TOPICS

- 1. Geochemistry of elements with elements of cosmochemistry
- 2. Crystallochemistry
- 3. Geochemical thermodynamics
- 4. Geochemistry of the Earth's interior magmatic and metamorphic processes
- 5. Geochemistry of water and aqueous solutions
- 6. Geochemistry of the hypergene zone, soils and sedimentary rocks

- 7. Foundations of atmosphere and environment geochemistry
- 8. Foundations of radioactive and stable isotope geochemistry, geochronology
- 9. Foundations of geochemical prospecting
- 10. Geochemical analysis methodology and interpretation

EXAMPLE QUESTIONS

- 1. The electronegativity of mineral-forming elements affects its properties because:
 - a) elements with high electronegativity form ionic bonds, making the mineral easily dissolving in water;
 - b) chemical bonds of elements with a small electronegativity difference are stronger and directional, resulting in increased hardness and reduced solubility in water;
 - c) chemical bonds of elements with high electronegativity are stronger and directional, resulting in increased hardness and reduced solubility in water;
 - d) minerals made of elements with high electronegativity are hard and insoluble in water.
- 2. Weathering process of potassium feldspars leads to the formation of kaolinite:
 - a) is a hydration reaction combined with a congruent dissolution process;
 - b) is a hydration reaction combined with a homogenous crystallization process;
 - c) is a hydrolysis reaction combined with an incogruent dissolution process;
 - d) is a congruent dissolution process combined with heterogenous crystallization